- Taboola Blog
- Data Science
Ted Lasso has some real-life lessons we can all take in. How is this possible? Take a look!
Why is it important to remove underperforming features to improve the product’s key metrics? Find out here.
We wanted to see if there was a way we could sync our Kubernetes NetworkPolicies dynamically with tools we already use, like Consul and Calico.
Read this article to learn more about what conversions are, how Taboola handle billions of daily events at scale, and how it all presents meaningful data to customers.
Kafka is an open-source distributed event streaming platform and something went wrong while working with it. Let’s see how it was investigated and resolved.
Find out the secrets to how Taboola deploys and manages the thousands of servers that bring you recommendations every day.
Optimize Data Center Health: Taboola employs LSTM Autoencoder for precise anomaly detection, enhancing system performance.
Taboola is responsible for billions of daily recommendations, and we are doing everything we can to make those recommendations fit each viewer’s personal taste and interests. We do so by updating our Deep-Learning based models, increasing our computational resources, improving our exploration techniques and many more. All those things though, have one thing in common – we need to understand if a change is for the better or not, and we need to do so while allowing many tests to run in parallel. We can think of many KPI’s for new algorithmic modifications – system latency, diversity of recommendations or user-interaction to name a few – but at the end of the day, the one metric that matters most for us in Taboola is RPM (revenue per mill, or revenue per 1,000 recommendations), which indicates how much money and value we create for our customers on both sides – the […]
At Taboola, we work daily on improving our Deep-Learning-based content-recommendation model. We use it to suggest personalized news articles and ads to hundreds of millions users a day, so naturally we must stick to state-of-the-art deep learning modeling methods. But our job doesn’t end there – analyzing our results is a must too, and then we sometimes return to our data science roots and apply some very basic techniques. Let’s lay such a problem out. We are investigating a deep model that behaves rather strangely: it wins over our default model for what looks like a random group of advertisers, and loses for another group. This behavior is stable in the day to day, so it looks like there might be some inherent advertisers qualities (what we’ll call – campaign features) to blame for this. You can see a typical model behavior for 4 campaigns below. So we hypothesize that […]
Introduction Newsrooms are under constant pressure to deliver the most up to date, relevant, and engaging information possible. At Taboola, we are building tools to make this faster, easier, and now–predictable. As soon as an article is published the team has a critical eye on engagement data. Garnering insight on article performance as soon as possible is critical for guiding content strategy. Some articles receive wide attention immediately, drawing hundreds of thousands of page views within minutes, others may only see the first page view after a few hours. Taboola aims to narrow this gap even further by leveraging Machine Learning Models to predict article performance the moment after it becomes available to the reader. Read on for details on our latest research and fascinating discoveries around predicting article performance! Article Data Taboola Newsroom is a real-time optimization technology that empowers editorial teams with actionable data around what stories, headlines, […]